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Shape-memory alloys (SMA) exhibit "super-elastic" deformation behaviour in both tensile and 
bending tests: linear-elastic and ideal-plastic sections occur alternately during a load/unload 
cycle. A new analytical model for the description of pure bending of SMA on the background of 
continuum mechanics is given. This model allows mathematical derivation of elasticity parameters 
needed for the characterization of SMA deformation. The parameter set consists of six elastic 
moduli and three strain limits, leading to a total of nine mechanical quantities necessary for 
analytically setting up the associated bending moment/bending angle diagram. The physical 
relevance of the elasticity parameters delivered by the model is checked by comparing 
experimental and theoretical (computed on the base of the parameter set) force systems on 
a T-shaped spring. 

1. Introduction 
A linear section of a shape-memory wire displays 
a characteristic stress/strain behaviour ("super-elas- 
tic{ty") in tensile tests (Fig. 1): after a linear ascent in 
stress up to the strain limit ~1, sharp bend follows. The 
deformation proceeds plateau-like with only a slight 
change in stress. Typical plateau widths for near equi- 
atomic NiTi range from 4%-7% relative strain. The 
upper plateau strain limit is denoted by ~2. Further 
loading causes another steep linear rise until the max- 
imum strain, ~ . . . .  is reached. Any violation of the 
elasticity limit, P, would result in irreversible deforma- 
tion of the material, and eventually in rupture. The 
behaviour in unloading is similar: the curve can be 
subdivided into three linear sections characterized by 
an "unloading plateau" between the strain limits a3 
and e4. However, this plateau is placed at a distinctly 
lower level, giving rise to a hysteresis in the graph. As 
any inflicted deformation (not exceeding the elasticity 
limit P) is non-plastic, the unloading branch ends 
close to the origin. 

This extraordinary behaviour is caused by revers- 
ible transformations between austenitic and marten- 
sitic crystal phases [1-3]. In addition to thermal 
activation, these phase changes can be invoked by 
application of external mechanical stress (stress- 
induced martensite) [4]. Both variants play an impor- 
tant role in explaining the shape-memory effect [5-7]. 

Most recent investigations have concentrated on 
tensile or torsional properties of super-elastic alloys 
I-8-10]. However, very few studies on the mechanical 
bending behaviour are available, although bending 
loads dominate in special medical devices such as 
endoscopes or orthodontic appliances where tooth 
movement is accomplished by using NiTi shape-mem- 
ory alloys. This paper presents a consistent analytical 
model of pure bending on the background of con- 

tinuum mechanics. Herewith, bending moment ver- 
sus bending angle diagrams of super-elastic alloys can 
be mathematically derived from a given set of elastic- 
ity parameters. Vice versa, if a measured curve is 
provided, the material parameters of the alloy under 
investigation can be determined by using an adapted 
optimization and fit algorithm. As a proof of the 
mechanical and physical relevance of the parameters 
obtained from this procedure, they are used for the 
calculation of force systems generated by a T-shaped 
NiTi spring. On the other hand, these force systems 
can be measured directly with a force-torque sensor. 
A comparison of theoretical prediction and experi- 
mental data confirms the quality of the proposed 
model. 

2. Analytical model of pure bending 
of super-elastic wires 

The calculations involved in obtaining the bending 
moment, M, from given mechanical parameters will be 
presented in brief outlines only. Details can be found 
in the Appendix and [11]. 

2.1. Presuppositions 
Like most theories, the analytical description of super- 
elastic bending needs several simplifying assumptions, 
most of which are suggested by stress/strain diagrams 
from tensile tests. 

(i) The stress-strain behaviour is characterized by 
a combination of up to six linear elastic branches 
which can be described by Hooke's Law: cy = sE (see 
Fig. 1). 

(ii) Any crystalline phase transformation is of re- 
versible nature [3, 12]. 

(iii) The formation of stress-induced martensite is 
a continuous process between the strain limits, sl 
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(pure austenitic phase, no martensitic variants)/a2 
(pure martensitic phase, transformation completed), 
and ~3 (retransformation to austenite starts)/e4 (re- 
transformation completed), respectively. 

(iv) Any planes perpendicular to the wire cross- 
section (longitudinal planes) are stress-free. This as- 
sumption excludes all forms of transverse interactions 
(Kirchhoff Love hypothesis). 

(v) According to Fig. 2, the wire can be thought of 
being composed of infinitesimally thin, sandwich-like 
layers which do not interact mutually. Thus, when the 
wire is bent by an angle of 2~ (where ~ denotes the 
rotation of one wire end with respect to the horizontal 

t~ 
m" 
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V 

Strain, c 

Figure 1 Stress/strain diagram typical of a shape-memory wire. The 
hysteresis curve can be decomposed into six linear-elastic sections. 

starting position), each layer defined by its thickness 
dz and vertical position z is exposed to a characteristic 
stress which is independent of the wire width. At z = 0 
(half of the wire height), there is a stress-free plane 
called the neutral fibre. Fig. 3 shows the front per- 
spective of a wire under bending load. Aside from the 
neutral fibre, another general layer at height z is 
marked in. While the neutral fibre remains constant in 
length, l, during a bending process, all other layers are 
lengthened or shortened by an amount Al depending 
on their z coordinates (A/ positive when the fibre is 
situated above the neutral fibre, A1 negative when 
situated below the neutral fibre, see Fig. 3). Simple 
geometrical relations lead to the result: 

and therefore 

l+A1 R + z  

l R 
(1) 

AI z 
--= l R (2) 

Consequently, in the case of circular bending 
(R = const.), the strain of a particular layer is propor- 
tional to its position z above or below the neutral 
fibre, making e and z equivalent parameters. This 
statement is illustrated in Fig. 3 where the stress distri- 
bution over the cross-section of a wire under bending 
load (maximum strain exceeds ~2) is depicted: With 
increasing distance from the neutral fibre (z = 0) 

rises according to Fig. 1. 
(vi) A common but unproved assumption is that 

the material responds symmetrically to elastic stretch 
and compression. Therefore, the layers at equal dis- 
tance above and below the n.f. are subject to the same 
absolute value of stress. 

The preceding discussion leads to a decomposition 
of the wire section into three different classes: 

Neutral fibre 1 + A1 

dz i/iiiiii!  'IIIII " "', A 

/ '  
/ "  

/ '  
/ '  

i ,\ / lal i 4' i/ 
...... " (b) 

! ./ 

20. / /  

\ / 

Figure 2 Decomposition of a wire into layers of quasi-constant stress for integration. The neutral fibre remains stress-free, all other fibres are 
exposed to z-dependent stress. 
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1. Class I comprises longitudinal layers of strain 
ranging from 0 to ~1. 

2. Class II contains fibres of strain between at and 
82. 

3. Class III covers a strain from I~ 2 to ~ . . . .  where 
8ma x denotes the maximum strain which is linked to 
the maximum bending angle 

Zmax h/2 
~max --  Rmi~ --  l /2~ma x (3) 

Fig. 4 illustrates the generation of a moment by area 
force pairs (created by the underlying stress distribu- 
tion) acting on a lever arm of length z. Correspond- 
ingly, the bending moment for a rectangular cross 
section yields 

M= faZF(A)dA= 2fa/2z~ 

= 2b Ih/2zo(z)dz 
do 

(4) 

where b is the wire width, h the wire height, o(z) the 
material stress at a height z above/below the neutral 
fibre. 

Any calculations that will be presented hold for 
rectangular cross-sections only. However, they can be 
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Figure 3 Stress distribution over a wire cross-section 
deformation. 

under bending 

Figure 4 Generation of a bending moment by material stress. Area 
forces are responsible for the occurrence of a bending moment. 

applied to round wires with slight modifications (use 
of trigonometrical functions) [12]. Because the expres- 
sion o(z) is entirely different for loading and unload- 
ing directions, the procedure of integrating the total 
bending moment varies for both modes. 

2.2. Moment integration for the 
loading mode 

As mentioned before, the model describes non- 
linearity in the material behaviour by composing six 
linear sections. Thus, o(z) assumes a simple form, and 
the moment integration is trivial. Stress distributions 
and integral bending moments in loading mode are 
listed for the three classes I-III, respectively. 

Class I (strain from 0 to ~ )  

offz) = ~E1 (5) 

3 

M,(ct) = 2bE1-3R = (6) 

Class II (strain between el and e2) 

(YII(Z) = ~1E1 + (g - El)E2 (7) 

I Z 2 Z 2 3 __ 3 1 2 - -  1 M,(~) = 2b el(E1 - -  E 2 ) - - ~ - ~  + E2 z~ - zi 
3R~ 

(8) 

Class III (strain from 8 2 t o  8max) 

CYlII(Z) = elE1 + (a2 - el)E2 + (~ - a2)(E3 (9) 

M,,,(~) = 2b{Is~(EI-E2)+sz(E2-E3)] 

(h/2) 3 - z 3 ] (h/2)2 - z2 + E3 (10) 
x 2 ~ -  

The following abbreviations have been used: 

z-coordinate of the specific 
layer, where ~1 is reached; 

z-coordinate of the specific 
layer, where c 2 is reached; 

zl = min(h/2, R~ax) 

Zz = min(h/2, Ra82) 

R~ = 1/2~ radius of curvature; related to bending 
angle ~. 

The limitation of Zl and z2 to a maximum of h/2 is 
necessary to cancel the integrals Mn and/or Mln in 
cases where the bending angle is so small that these 
parts do not yet contribute to the integral. 

The total bending moment in loading mode is the 
sum of the three class-specific partial moments: 
M(~) = M I ( ~  ) q- MII(~)  q- Mln(~). 

2.3. Moment integration for the 
unloading mode 

Moment integration for the unloading mode is basi- 
cally identical to the loading mode procedure. How- 
ever, a major complication in the analytical treatment 
of the unloading direction is the fact that the develop- 
ment of a stress distribution in the wire cross-section is 
dependent on the loading history. Figs 5 and 6 illus- 
trate the latter statement: when the maximum bend- 
ing angle, ~ . . . .  is reached, strain values from 0-~m,x 
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Figure 5 Stress diagrams for integration layers during a load/unload cycle: (a) Class I, (b) Class II, (c) Class III, (d) Class IV. Because the '  
material behaviour is non-linear, the moment  integration has to be divided into four classes, I-IV. 
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Figure 6 Possible stress curves of Classes II/III integration layers, depending on the set of elasticity parameters and the maximum stress in 
a specific fibre. 

are distributed linearly (in sectors) over the z coordi- 
nate (see Fig. 3): the neutral fibre remains stress-free, 
fibres of Classes I-III  are stretched up to certain limits. 

2. 3. 1. Characterization and subdivision 
of integration classes in unloading 

2.3.1.1. Class I. Fibres of maximum strain not ex- 
ceeding ~1 (Classs I, layers close to the neutral fibre) 

are treated as pure austenitic. They are untouched by 
martensitic transformations typically turning up at 
significantly higher strain levels. Therefore, they can 
be described by the Young's modulus of elastic aus- 
tenitic deformation, El, which is equal for both load- 
ing and unloading mode (Fig. 5a). For a realistic 
choice of the parameter set (ei, El), the contribution of 
Class I layers to the total moment is of the order of 
a few percent. 
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2.3.1.2. Classes I I / I I I .  Any fibres of maximum strain 
values between 1;1 and ~2 (plateau) undergo a stress- 
induced martensitic transformation and, incident to 
this phase change, a detwinning process which allows 
the material to display a pseudo-plastical behaviour 
[13]. Reasons for further decomposing these layers 
into Classes II and III will be explained later. The 
simplified model presented here assumes that the 
transformation is continuous and covers the whole 
plateau: at a maximum strain of 1;1 a fibre is purely 
austenitic, at 1;2 it is purely matensitic. For any max- 
imum strain in between these limits, the fibre contains 
both phase variants to certain portions 

I; 2 - -  Cmax(~2 ") 
percentage of austenite - (11) 

1;2 - -  1;1 

a=,x(z) - 1;1 
percentage of martensite - (12) 

g 2  - -  1;1 

According to the phase portions, elasticity moduli 
between E1 (slope of purely austenitic unloading, max- 
imum strain gl) and E6 (slope of purely martensitic 
unloading, maximum strain 1;2) have to be used 

1;2 - -  1 ;max(Z)  - -  1;1 
E [ - 1 ; m a x ( Z ) ]  - g m a x ( Z )  E 1 + E 6 (13) 

1;2 - -  E1 1;2 - -  1;1 

1;max(Z) denotes the strain of an integration layer at 
a height z above the neutral fibre when the maximum 
bending angle is reached. As a result, every integration 
layer of Classes II/III has a different unloading slope 
depending on its maximum strain level. In turn, the 
maximum strain depends on the z coordinate of the 
fibre under consideration and therefore on the integra- 
tion variable, preventing a simple analytical integra- 
tion. However, the problem can be made integrable by 
the introduction of the following multi-group model. 

Class II/III (maximum strain values from ~1 to 1;2) 
integration layers are further subdivided into n groups 
with constant unloading slopes, respectively. The 
slope in group k is defined by 

(n -- 1 -- k)E1 + kE6 
E,k= , k =  1 ... n -  1. (14) 

n - 1  

Thus, the moment integral is split into n terms of 
a sum which can be evaluated analytically (see below). 
If the total number of subgroups n is large enough, 
a continuous slope change from E1 to E6 can be 
simulated. 

As soon as a wire layer enters the lower plateau, Es, 
a critical stress level is reached where martensite be- 
comes thermodynamically unstable and austenite is 
the favoured phase [,14]. Thus, the unloading branch 
follows the plateau (accompanied by a continuous 
phase change from martensitic to austenitic state) un- 
til the material has been completely retransformed to 
austenite (at 1;,). From there, it returns to the origin 
with a slope E4 characteristic of austenitic unloading 
after transformation. This method of defining unload- 
ing slopes requires a distinction of different cases dur- 
ing the integration of stress for fibres with a maximum 
strain close to 1;1 depending on the choice of El, E4, E6 
and e4 the unloading branch touches (a) the plateau, 

Es, (b) the austenitic unloading branch, E4, or (c) the 
austenitic loading branch, EI. Fig. 6 shows these three 
possible situations. 

To avoid this discrimination of three cases and to 
simplify the calculations further, Class II/III can be 
thought of as being composed of two distinct classes 
with well-defined returning slopes (explaining at the 
same time why the fibre class of maximum strain 
between 1;1 and 1;2 has been named II/III so long. 

Class II is defined to comprise integration layers of 
strain values close to 1;1 and with an unloading branch 
which does not cross the lower plateau. For these 
layers, a uniform unloading slope E1 is used (Fig. 5b). 
After the branch hits the austenitic return path, E4, at 
a strain level $2, it returns to the origin. The strain 
limit on the upper plateau, at which the according 
unloading branch does no longer hit the austenitic 
return path but the lower plateau is denoted by 1;g. 
Hence, any fibre of maximum strain between 1;1 and % 
belongs to Class II. A significant change in the bend- 
ing moment integral caused by using constant slopes 
over the whole range of Class II does not result, as the 
portion of Class II integrals in the total moment is in 
the order of a few per cent only. 

Class III covers any fibres of maximum strain be- 
tween % and 1;2. Unloading branches intersect the 
plateau, Es, at a strain limit, S~ k, In Class III, the 
slopes E,k of the multi-group model apply (Fig. 5c). 
Despite the major volume of the wire layers belonging 
to Class III, their contribution to the integral bending 
moment during unloading is still small compared to 
Class IV (about 30% compared to 60%): because 
Class IV has a steep ascent (modulus E3) large stress 
levels result. However, the situation is reversed in 
unloading. After a part of both Classes III/IV has 
reached the lower plateau, all stress per fibre values 
are in the same range making the larger volume por- 
tion of Class III the dominant criterion. 

Class IV. Any fibres under a maximum strain 
greater than ~2 belong to Class IV. According to the 
model, these layers are purely martensitic suggesting 
a slope of E6 for the unloading branch. After hitting 
the plateau at a strain of $4, the stress path continues 
with E5 and E4 towards the origin (Fig. 5d). 

In the present study we have presupposed that four 
classes are sufficient to characterize the behaviour of 
all layers contained in the bent wire. As a consequence, 
the maximum strain must be restricted to 5%-8% in 
order to prevent irreversible plastic deformation 
which would not be covered by a description using 
four classes. 

2.3.2. Bending moments in unloading 
With the preceeding preparations, stress and bending 
moments can be evaluated. In this section, only the 
final results will be presented. Detailed derivations can 
be found in the Appendix and in [12]. Depending on 
the choice of elasticity parameters, two different events 
may occur in the calculations for Classes II, III and 
IV: 

(a) fibres with higher z coordinates reach the inter- 
section point $2/3/4 first, lower z fibres follow, or 
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(b) fibres with lower z coordinates reach $2/3/4 first, 
higher z fibres follow. 

The relevance of this distinction is explained in the 
Appendix. 

Class ! (fibres of maximum strain between 0 and e~) 

M~(~) = 2b zglE1 (14) 
3R~ 

Class II (fibres of maximum strain between e~ 
and %) 

Case (a) 

M,,(~) = 2b[el(El - E2) z2 -- 2 Z21 

3 3 Z 3 
Z 2 - -  ZO1 - -  Z031 

4- ( E  2 - -  E l )  3 e m ~ n  -~ E 1  23R~ 
Z 3 __ _ 3 7  

31% j 

Case (b) 

(15) 

F Z29 Z~ 
MII(O0 : 2bLel(E,  - E J  

2 

Z 3 __ Z 3 Z 3 __ Z 3 
+ (e~ - E l t  0=%__~ + E 1 % - -  

3Rmi~ 3R~ 

3 3 7  
Z 2 - -  Z 0 + ] (16) 

Class III (fibres of maximum strain between % 
and e j  

Case (a) 

~=OI nk2 2 n-  1 Z3 __ Zn k 
Mm(~) = 2b k e l ( E 1  - -  E 2 )  

2 

(znk'13 __ 3 nkr nkX33R~ 3 I1 E t z 3 ) - -  Z,k 
+ (E2 -- E.k) ~ 3;Rmin znk -Jr" 

n -  t t- , nk:3 ," nk~3 
2b v ] E  [Z2) - z ~ - Z 3 )  

+ 4 3R~ + e4(e, - Es) 

3 nk 31 2 - (z~b 2 z.,k + k - (z~) 
M Zn'k+ 1 2 + E5 3R~ J 

Case (b) 

2b k ,, k + t -- (4k) 2 Mm(~) = el (El - 2 

73 
_~_ ( E  2 _ L'nk!K" ,~-n,k+l + (z~k) 3 

3 R m i n  

Z 3 (znk'~3-[ E n , k + l  - - t  3 /  ] + / 

n-  i [- iznk]3 3 
~=oL \ z ] - -  Znk + 2b E4 ~ 

k 

+ ~4(E,~ - E~) (z~)~ (z"?) ~ 

2 

(zn3k) 3 -- (znk)31 

Class IV (fibres of maximum strain greater than e2) 

Case (a) 

2 _ z h  
Mw(~) = 2b [el(El - E2) + e2(E2 - E3__ z4)] 

2 

Z 3 Z 3 3 3 ) . 4 - -  02 Z4 - -  Z02 
~- ( E 3  - -  /2;6) 3f im~n -~- E 6  ~ 7  " 

( z 3 z 3 
+ 2b E 4 ~  es )  t + e4(E4 - 3 N ~  

(h2/4) - z2 r (h3/8) - z ~  
x 2 + t:5 3-R~ ~ (19) 

Case (b) 

M,v(~) = 2b{[ea(E1-  E2)+ 82(E2-  E3)](h2/4)2 - 
Z 2 

- -  ( h 3 / 8 ) -  z 3  t 
-k (E3 - E6)(h338)RminZ3-}- E6 ~-R] 

.i 

+ 2b[E4 z~ - z32 ~ -  + ~4(E4 - Es) 

2 Z~ --  Z z 7 ZI __ Zz 3 3 

x 2 + E5 3R~ ! [ (20t 

The total bending moment during the unloading pro- 
cess is the sum over all contributions of Classes I-IV 

M(r = M,(~) + M,,(r + M,,,(r + M,v(r (21) 

3. Determination of elasticity 
parameters in bending experiments 

Using the analytical model presented, bending mo- 
ment/bending angle diagrams can be calculated for 
any given set of elasticity parameters (ei, Ei). Yet the 
aim of an evaluation routine for bending experiments 
is vice versa: elasticity parameters are to be derived 
from experimental moment/angle data which means 
the inversion of the moment integration and therefore 
is not trivial. An indirect, iterative least squares fit 

(17) [15] provides a suitable solution: a set of start para- 
meters is chosen to generate a moment/angle graph 
for a defineable number of different bending angles. 
This diagram is compared to the measured bending 
data, and deviations are squared and added. Further- 
more, the gradient with respect to variation of the 
elasticity parameters is evaluated, thereby providing 
a correction in the start parameters necessary for 
better agreement. This correction is used for the next 
iteration step repeatedly until the least square value 
no longer changes noticeably (break-off criterion). 

The evaluation program uses a modified Leven- 
berg-Marquardt algorithm [16] with iterative step- 
width adaptation. Start values, number of different 
bending angles, number of groups (in the multi-group 
model) and break-off criteria can be defined as fit 
parameters. The theoretical fit curve is superposed 

(18) with the experimental data to provide an additional 
visual comparison. 
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4. Veri f icat ion of the model 
An example moment curve of a super-elastic NiTi wire 
(Unitek* Nitinol SE | rectangular cross-section 
0.016in • 0.022in, l = 8 mm) is fitted to serve as a first 
test whether the simplified bending model allows an 
appropriate description of the bending mechanism 
with a set of nine parameters (~i, Ei). Fig. 7a shows the 
superposition of nine measurements with maximum 
bending angles of 10 ~ 20 ~ 30 ~ ... ,  90 ~ Fig. 7b dis- 
plays the result of the corresponding Marquardt fit. 
The curves are in excellent agreement, as the difference 
diagram (Fig. 7c) illustrates. In addition, the measured 
graphs (Fig. 7a) display exactly the same unloading 
behaviour as was used in the model: for ~ small max- 
imum load (10 ~ 30 ~ maximum bending angle), loading 
and unloading paths have approximately the same 
slope (El in the ~/e plot), and for increasing maximum 
angle they pass continuously into the martensite un- 

loading slope (E  6 in the cy/e plot). Therefore, the multi- 
group theory, decomposition into four moment 
classes and limitation to nine parameters are proven 
as adequate for a theoretical description of the 
bending behaviour of super-elastic wires. 

Despite the satisfying congruence of theoretical and 
experimental moment curves, the physical relevance of 
the evaluated parameters is still questionable. To 
prove that the model describes the super-elastic 
bending mechanism satisfactorily, the parameter set 
will be employed for the calculation of a force system 
of an orthodontic T-shaped spring (T-loop) subject to 
an activating force. These calculations will be per- 
formed using a plane model of super-elasticity based 
on the finite element method (FEM). The model de- 
scribed elsewhere [17] enables the determination of 
the behaviour of NiTi shape-memory alloys and is 
capable of simulating large structural displacements 
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Figure 7 Comparison of measured and fitted curves for a super-elastic NiTi wire (Nitinol SE). The main elasticity parameters used in the 
theoretical model of super-elastic bending allow an excellent fit of (a) measured data with (b) a theoretical curve, as the difference diagram 

(c) shows. 

* Uni tek/3M, Monrovia,  CA, USA. 
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and rotations accompanied by moderate strains (up to 
10%). Using the nine mechanical parameters of super- 
elasticity described above, the FEM determines the 
non-linear stress/strain distribution in the cross-sec- 
tion of a planar beam and subsequently performs 
a numerical integration using a Gaussian Quadrature 
algorithm to calculate the force systems. The numer- 
ical results are compared with the force system of the 
T-loop measured directly by a three-dimensional 
force-torque sensor 1~18]. To simplify matters, only 
two dominant components of the measured and cal- 
culated force systems are depicted: the lateral force, F~, 

M v 

JL 

X 

A c t i v a t i o n  

Figure 8 Force system of a plane T-loop. Dominant components 
are the lateral force, F~, acting against the activation, and moment, 
My. 

3~ 

A c t i v a t i o n  (mm) 

-1 
(a) 

' 1'5 

and the moment, My (Fig. 8). Both force and moment 
are in good conformity with the calculations based on 
bending parameters (Fig. 9). The results of this study 
substantiate the whole analytical proceeding presented. 

5. Conclusion 
NiTi memory wires display a characteristic material 
behaviour in bending experiments. The bending pro- 
cess can be described by a stress/strain curve linear by 
sectors. It is characterized by a set of nine parameters 
(~, E~) which are suggested by tensile tests. The mo- 
ment integration requires a decomposition of the wire 
into classes and subclasses in order to make the calcu- 
lations compatible with continuum mechanics. Not 
only does the model of super-elastic bending allow the 
calculation of moment/angle diagrams from given 
parameter sets, it reversely provides elasticity par- 
ameters relevant for the mechanical behaviour of the 
material with the aid of bending experiments. 

Appendix 
The moment integration in unloading is presented in 
detail here. However, trivial algebraic reformations 
have been omitted. The classification of wire fibres 
(Classes I-IV) in unloading was described earlier. 

A.1. Class I (fibres of maximum strain 
between 0 and sl)  

Unloading leads towards the origin with the uniform 
slope, E1 (Fig. ha). While wire fibres are classified by 
their maximum strain, the z coordinate relative to the 
neutral fibre is needed for moment calculations. Max- 
imum strain between 0 and ~1 is equivalent to z values 
from z = 0-z = Zol = elR~. Thus, the integral for 
Class I may be written as (the integrands I c~as~ are 
defined as I cl~s-- 2bz~~ Further explanations 
are given in parentheses) 

M~ = I~ (unloading path from ~m.x to O) (A1) 
j 0  

The unloading path is characterized by a stress 
~ = eEt. Thus, the final result of integration yields 

M,(~) = 2b z~ E1 (A2) 
3R~ 

20 

16 

12 -g 
E 
z 8  

~4 

0 3 ' 6 ' 9 ' 1'2 1'5 

-4 A c t i v a t i o n  (mm)  
(b) 

Figure 9 (a) ( 7  Measured and (- - - )  calculated lateral force, Fx, 
on the T-spring. (b) (--) Measured and ( - - )  calculated moment, 
My, on the T-spring. 

A.2. Class II (fibres of maximum strain 
between 81 and %) 

The unloading path for Class II layers starts from ~1, 
leads with constant slope E1 towards the austenite 
unloading branch, E,, which is crossed at a strain 
$2 and continues towards the origin (Fig. 5b). % is 
defined as the smallest strain on the loading plateau, 
from where unloading with E1 still touches the un- 
loading plateau, eg is determined by a "mesh" (closed 
path) in the stress/strain diagram 

~1E1 + (% - 81)E2 = e,E4 + (% - e,)E1 (A3) 

This leads to 

E 4 - E t 
~g : ~1 -[- ~4"r2~ - E t  (A4) 
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The strain coordinate, $ 2 ,  of the intersection point 
where the unloading branch crosses the austenite re- 
turn path (slope E4) can be derived from a similar 
mesh in the ~/~ plot 

E1E1 + (F-max - -  ~;1)E2 - $2E4 -}- (l~max - -  S2)E1 (A5) 

Replacing ~max = z /Rmi ,  yields $2 

( z  ) E l - - E 2  
S z = R~m~ - e ~ - ~  E ~4 (16) 

As before, strains have to be translated into height 
coordinates for the purpose of integration. To obtain 
the z coordinate related to $2 (for a given bending 
angle), $2 is equated with z/R~,  the strain a fibre at z is 
exposed to at a bending angle a. This leads to 

R~ Et ~ (AT) 

Because Class II z coordinates only contribute to the 
integral if they are related to strain values between ~1 
and %, the following restrictions have to be made 

Z 2 ~ min [max(zs~(~), ZolJ, Zog (A8) 

with Zo~ = RrnlnE1 and Zoo - RminE9" 
Introducing z2 divides the Class II bending moment 

into two components: 
(i) the moment generated by fibres that have not 

yet passed the strain limit Sa; 
(ii) the moment produced by fibres which have al- 

ready passed $2 and now follow the austenite unload- 
ing branch, E4, towards the origin. 

Depending on the choice of elasticity parameters, 
two different events may occur: 

(a) fibres with higher z coordinates reach $2 first, 
lower z fibres follow, or 

(b) fibres with lower z coordinates reach $2 first, 
higher z fibres follow. 

Therefore, the expression for $2 has to be analysed 
for any set of parameters (~, E~) in order to decide if 
case (a) or (b) has to be employed for further calcu- 
lations. Accordingly, two different Class II integrals 
are possible. 

Case (a) 

~'20g 

Mn = I n 
z01 

i 

= ~ I~  (unloading branch from em,x to $2) 
go1 

bZOg 

+ I~ (unloading branch from S: to O) 

~ (A9) 

Case (b) 

m n  = 

4- 

'ZOg 
/ i t  

Z01 

%I~ (unloading branch from $2 to 0) 
gOt 

"ZOg 

I n (unloading branch from Cma~ to $2) 

< (A10) 

The corresponding stress expressions are given by 

I~: o~ -- EIE1 -~- ( g m a  x - -  ~1)E2 

--  (Emax --  g)E1 ( A l l )  

I~: o~ = ~E4 (A12) 

so we finally have 
Case (a) 

mn(~) = 2b[q(E1 - E2) z2 - 2 z2a - -  4- ( E 2  - -  E l )  

- '  zoO1 ? _ _  lC 2 ~ 0 1  E zbg - z i ~  
3Rmi n + ~1 3R~ + 4 3R~ J 

(A13) 

Case (b) 

2 _ 

MII(O0 = 2b ~1(E1 - E:)  Z~176 

z o O .  - z - 

x 3 R m i ~  + E1 ~176 

- -  + (Ez  - E l )  

j 
(A14) 

A.3. Class III (fibres of maximum strain 
between sg and Su) 

The unloading branch for Class III layers starts at 
a maximum strain, decreases with a slope E,k which 
simulates the continuous transition from the Class 
I return slope E1 to the Class IV slope E6 in n steps 
(Fig. 5c): 

( n - k -  1)El +kE6 
Enk = , k = 0 . . .  n - 1. 

n - 1  

These n steps are related to n groups of constant 
gradient, respectively. They are integrated separately 
and summed up. Every unloading branch (E,k) hits the 
lower plateau at a group-dependent strain, S~ k, where 
it continues with slope E5 until e4 is reached. It returns 
to the origin with E4. 

The intersection strain, S"3 k, is again derived from 
a stress/strain mesh 

~31E 1 4- ( E m a  x - -  81)E2 = ~;4E4 4- ( ~ m a x  - -  sn3k)Enk 

+ (S"3 k - ~4)E5 (A15) 

Inserting ~max = Z / R m i n  yields S"3 k 

s.3g = (z/Rmi.)(E2 - Eng) + e.1 (El - E2) + ~a(E5 - E4) 

E 5 - Enk 

The corresponding z coordinate 
branch is given by the equation 

znk ( 
S.3k_ s3~ ~) 

R~ 

(A16) 

on the loading 

(A17) 

~31(E 1 - -  E2) Jr- g4(E5  - -  E4) nk 
Zs3(O 0 = Rmi n (Rmin/R~)/(E 5 -- Enk ) -- (E  2 - -  Enk ) 

(A18) 
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The integral must be zero if strains outside the Class 
III limits (% to ~2) occur, so we define 

z~ . .k (A19) = mm[max(zs~(~), Z.k], Z.,k+l 

with 

Znk = 
(n - k - 1)Zo0 + kzo2 

, k = 0 . . . n  - 1 (A20) 
n - t  

Here, Z,k represents integration limits between the 
n groups defined earlier. 

Another decomposition of the integral at the z coor- 
dinate corresponding to ~4 is necessary, because the 
integrand changes discontinuously there. This limit is 

.k Additionally, .k has to be ~estricted to defined as zz , z~ 
the interval .k [z3 ,  Z.,k+ 1] if case (a) holds, and [z.k, z'~ k] 
if case (b) holds (see below). 

After these preliminary definitions, the Class III 
bending moment can be evaluated. Again, case (a) or 
case (b) may occur, depending on the choice of elasti- 
city parameters. However, if one case holds for a single 
group, it holds for all other groups as well. 
Case (a) 

f 
Z02 

Mm = /III  

d ZOg 

= " 2  ~" I~ I (branch from ~m,x to S"3 k) 
k = 0 L d  z~k 

+ to g,) + I~I(c4 to 0) 
2,~ k nk 

(A21) 

with 
.k min[max(z~ k, e4R~), Z.,k+I] (A22) Z z 

Case (b) 

f 
z02 

Mm = I m 
,3 ZOg 

= ~ I nl (branch from a4 to 0) 
k = 0 Ld z .k  

i 
znk 

+ (S~ g to t:4) 
t] ZZnk 

-t- I~l(gma x to S (A23) 
nk 
3 

with 
z'~ k - min[max(z~ k, g 4 R = ) ,  zn,t +.l] (A24) 

The corresponding stress expressions are given by 

Illn: CrI111 = E I E 1  + (~max - -  el)E2 

- (am~ - e)E.k (A25) 

l~l: o m = e4E4 + (e - ~;4)E5 

I~l: cY~ l = eE4 

(A26) 

(A27) 

so we finally have 

Case (a) 

Mll i (00  = 2 b  ~;I(E1 - -  E2)  -2 
k 

Eznkx3 3 1 _.~ (E  2 _ it? ~,t 3 )  2 _ Z n k  (Z~k) 3 - -  Z3/r 
~nk! 3Rmi. + E,,k ~ 

n -  1 [- [znk'~3 (znk~13 
[ , ~  t z J  - - t  3 !  

+ 2b z., 1"4  ~ -  + Ee(E4 -- E5) 
k = 0 L  ct 

2 (Znzk)2 3 nk 3 - - ] X Zn ' k+  1 

Case (b) 

2b k E2) z" 'k+l Mm(~)  = ~1 (El  - 2 

z 3 _ (z. k)3 
+ (E2  - -  E.k) . ,k+l  

3Rmin 

Z 3 l_~( zn3k )3_~  
+ 12 n ,k+ 

L'nk 3R~ d 

n - 1 [- ( znk)3  3 
2 1  ' z ' - - Z n k  + 2b E 4  3-R~ + g 4 ( E 4  - -  ES)  

k = 0 L  ct 

(A28) 

(z~k) 2 - -  (znk) 2 (z~k) 3 - -  (znk) 3-] 

2 + E5 3 ~  j 

(A29) 

A.4. Class IV (fibres of maximum strain 
greater than Sl) 

The unloading branch for Class IV fibres runs with 
a uniform slope of E6 from maximum strain towards 
the lower plateau which it intersects at a strain $4 and 
continues along the plateau (Es) to the point e4. It 
decreases with a slope of E4 back to the origin 
(Fig. 5d). 

The stress/strain mesh yielding, $4, is given by 

F'IE1 + (~2 - -  g l ) E 2  + (gmax - -  g 2 ) E 3  

= E4E  4 -l- (S  4 - E 4 ) E  5 + (l~ma x - -  S 4 ) E  6 (A30) 

o r  

$4.  = ( z / R m i n ) ( E 3  - E6)  + ~1(E1 - -  E 2 )  + ~2 (E2  - -  E3)  + g4(E5 - -  E4)  

E 5 - E 6 

The corresponding z coordinate becomes 

Zs4(~)  = Rml .  ~ ' ( E 1  - -  E z )  + e z ( E 2  - E3)  + e 4 ( E 5  - E4)  

( R m i n / R a ) ( E  5 - E6)  - ( g  3 - E6 )  

(A31) 

(A32) 
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Class IV strain should be limited to the interval 
(~2, Zm,x) suggesting the definition 

Z 4 = min[max Zs,(Cz), Zo2], h/2 (A33) 

Like in Class III, the integrand changes discontinu- 
ously at ~4, so the integral has to be split at the 
corresponding z coordinate. This splitting point is 
defined as z2 and is restricted to the interval (Zo2, z4) if 
case (a) holds (fibres with higher z coordinates reach 
$2 first, lower z fibres follow), or (z,, hi2) if case (b) 
holds (fibres with lower z coordinates reach $2 first, 
higher z fibres follow). Consequently, the moment 
integral of class IV is given by 

Case (a) 

MIv = fh/2IIV = fJ  4llv (branch fr~ ~max t~ zo~ o~ 

fZ z I hI2 + I7($4 to e4) + I7(e4 to 0) (A34) 
4 JZz 

with 

z= = min[max(zo2, g4Ra), z4] 

Case (b) 

fh/2 f=2 Mw = /iv = I~ v (branch from ~, to 0) 
,,1 Z02 L/ Z02 

(A35) 

f ~4 Ch/2 
+ I~ v ($4 to ~4) + I ]v (Ema x to $4) 

dZz JZ 4 
(A36) 

with 

zz = min[max(z4, g4R~), h/2] (A37) 

The following stress expressions have to be inserted 
into the integrands: 

I~V: o Iv = E I E  1 + (82 - -  E l )E2  + (Emax - -  g2)E3 

- -  (gmax - -  g)E6 (A38) 

/iv: o~v = e, E4 + (Ema x - -  1~4)E5 (A39) 

/IV: oIV = eE4 (A40) 

The final result yields 

Case (a) 

{ Z 4 - -  Z02 
M,v(CZ) = 2b [el(El - E2) + g2(E2 - -  E 3 ) ] ~  

_ - -  ez43-zo    
+ ( E 3  E6)Z33RmiZ~ 2 +  6 3-Ra S 

I 3 23 Zz - -  4 
+ 2b E 4 ~  + e4(E4-  Es) 

2 (h3 /8 )  _ z 3 ]  
(h2 /4 )  - z= + E5 (A41) 

x 2 - ~  ] 

Case (b) 

= 2b ~[~1 (E, - E2) + ez(E: - E3)] Miv(Ct) 

(h2/4) - zl 
+ (E3 - -  E6) 

2 

(h3/8) - 243 8 ) -  2 3 )  

3Rmi n + E 6 ( h 3 / 3 R  ~ - 

2 [- Z 3 Z 3 . Z 2 Z z 2b[E,, z ~___02 
+ L + e 4 ( E ,  - E5) 2 3Na 

Z 3 _ z3q  

The total bending moment during the unloading pro- 
cess is the sum over all contributions of Classes I-IV 

M(~) = M,(~) + M,,(~) + Mm(~ ) + M,v(~) (A43) 
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